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The properties of aggregates generated from an off-lattice, two-dimensional, particle-cluster ag-
gregation model with dipolar interparticle interactions have been investigated. The fractal dimension
seems to be a monotonically decreasing function of the temperature, between a definite value close
to1l at T = 0 and the limit T' — oo, corresponding to diffusion-limited aggregation of particles
with no interaction. Temperature and dipolar interactions are introduced by means of a Metropolis
algorithm. By analyzing the orientational correlation function, and what we call the orientation
probability density of the direction of the dipoles on the clusters, an ordered state is found at low
temperatures. This order diminishes when the temperature increases, due to the disorder induced
by the fractal geometry of the aggregates. Our study is extended to the three-dimensional case.
A disordered state is found even at T' = 0, and a remnant order is shown when analyzing related

two-dimensional correlations.

PACS number(s): 82.20.Wt, 61.43.Hv, 64.60.Cn

I. INTRODUCTION

The irreversible aggregation process of initially dis-
persed particles to form fractal clusters (i.e., fractal
growth phenomena [1]) has attracted a great deal of in-
terest in the last decade, especially since the develop-
ment of computer models. There are two basic models of
fractal aggregation: particle-cluster aggregation (PCA),
the most well-known being the diffusion-limited aggrega-
tion (DLA) model of Witten and Sander [2], and cluster-
cluster aggregation (CCA) [4,5]. In particular, numerical
simulations performed with CCA models can describe the
fractal structure of aerosols and colloids 3], which are in
good agreement with experimental results. These com-
puter models constitute coarse-grained simulations of the
actual physical processes of aggregation, since they con-
sider, in principle, a very simple short-ranged interparti-
cle interaction: a hard-core, plus an infinite potential well
on the surface of the particles, and no interactions for all
other distances. For this reason, they are well-suited to
simulate aggregation with interactions that strongly de-
cay with distance, but they fail to describe aggregation
with long-range interparticle forces.

Some authors have extended CCA and PCA models
in order to take interparticle interactions into account.
Ansell and Dickinson [6] proposed a CCA model in which
particles experience hard-core plus van der Waals inter-
actions by means of a Langevin dynamics algorithm.
Meakin and Muthukumar [7,8] developed a model of
reaction-limited CCA [9] with attractive and repulsive
power-law interactions. On the other hand, Block et al.
[10] presented a model of deterministic PCA, in which
particles do not undergo a Brownian motion before be-
ing attached to the cluster. Instead, they undergo a de-
terministic trajectory under a power-law force exerted
by the particles already incorporated in the cluster. A
particularly interesting case is the aggregation of parti-
cles subject to dipolar forces, observed in ferrofluids and
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the so-called magnetic holes [11]. Part of its interest lies
in the simplicity of the experimental setup for its study,
which can be easily performed with magnetized micro-
spheres [12]. This kind of interaction has been simulated
in a hierarchical CCA model [13] and in a box with pe-
riodic boundary conditions on its sides [14]. In this case,
interactions are introduced by means of a Metropolis al-
gorithm [15] and the results obtained are in close agree-
ment with experience [14]. A hierarchical CCA model
with ballistic trajectories [16] has also been proposed,
yielding results that confirm those in Refs. [13,14]. How-
ever, because CCA simulations require a great amount of
CPU time to generate large clusters, only modest-sized
aggregates can be grown by means of these algorithms
(up to 128 particles [13,14,16]). Those results do not al-
low categorical conclusions to be made about the fractal
character of the dipolar clusters obtained.

Our purpose in this paper has been to extend the PCA
model in order to include anisotropic dipolar interparticle
interactions, by means of a Monte Carlo algorithm based
on those described in Refs. [13,14]. Our algorithm is con-
siderably faster than any other CCA dipolar model. At
zero temperature, we have been able to generate clusters
of up to 5000 particles in a reasonable amount of CPU
time. For larger values of temperature, however, the
CPU time needed to grow clusters containing more than
1000 particles is exceedingly large. In any case, we have
achieved an increase in size of one order of magnitude,
allowing an increased accuracy in the results and a reduc-
tion of statistical errors over previous studies. We have
distributed the paper in the following way. In Sec. II, we
describe our computer algorithm for the PCA of dipolar
particles in two dimensions. Section III discusses some
properties of these dipolar clusters. In particular, we
compute the fractal dimension D as a function of temper-
ature and study the order induced on the orientation of
dipoles by its reciprocal interactions, which is reflected in
two different kinds of orientational correlation functions.
In Sec. IV we comment on the extension of our model
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to three dimensions and the results we have obtained.
Finally, conclusions are given in Sec. V.

II. COMPUTER MODEL

In our two-dimensional (2D) off-lattice model, we con-
sider the aggregation process of magnetic particles of di-
ameter d and magnetic moment g = pu, with u being the
magnetic moment strength and w a unit vector oriented
along its direction. The dipolar interaction between two
particles ¢ and j, located at the positions »; and »;, re-
spectively, is characterized by the energy

Uij = n’uij, (2.1)
where u;; is the dimensionless dipolar energy

wi; = {wi-w; —3(wi - vij)(w; -riy) v} vy, (2.2)

and Tij =T —Tj.

We start the simulation with a particle, referred to as
the “seed,” placed at the origin of coordinates, bearing
a randomly oriented tridimensional vector w;, and par-
allel to the plane of growth. The following particles are
released from a randomly chosen position on a circle of
radius R;, centered on the seed. The released particles
have assigned a vector u; oriented at random. Each par-
ticle undergoes a random walk until it either contacts
the cluster or moves away from the origin a distance
greater than R,,;. In this case, the particle is removed
and a new one is launched from the circle surrounding
the seed. Since magnetic dipole-dipole interactions are
long range, the launching radius must be large enough
in order to avoid bias in the shape of the cluster due to
the initial conditions, i.e., the position on the launching
circle where the particles were released. We have chosen
the values Ri, = ARpax — € and Royy = ARpmax, where
Rax is the maximum radius of the cluster. The simu-
lations have been carried out with the values A = 2 and
€ = 5, which are quite reasonable, due to the power-law
decay of dipolar interactions. For A = 2, the energy de-
cays on the average one order of magnitude from R,a.x
(the neighborhood of the cluster) to R;, (the launching
distance). A value of A = 4 has also been tested and
it provides, within the error bars, the same result for
the fractal dimension but the computation time increases
dramatically.

The random walks experienced by the incoming parti-
cles are affected by the interactions exerted by the par-
ticles already attached to the cluster. We have taken
this fact into account by using a Metropolis algorithm
partially adapted from Refs. [13,14].

Suppose that the cluster is composed by n—1 particles,
placed at the points »;, 2 = 1,...,n — 1. In some instant
of time, the incoming nth random walker occupies the
position 7,, and its interaction with the already attached
particles is given by the total energy

n—1
ur = Zum-. (23)
=1

After a Monte Carlo time step, we compute a new posi-
tion =], for the random walker. The particle arrives at
this position by means of a Brownian motion, which oc-
curs in a direction chosen at random and whose distance
is one diameter d. The movement to the new position
7!, is performed rigidly, that is, the vector u,, does not
change its orientation during the motion. The energy
experienced in the new computed position », is u/., and
the total change in the energy due to the movement is
Aup = ulp —up. If Aup < 0, then the movement is
accepted and performed. If Aur > 0, we compute the

quantity
p = e KAur, (2.4)

where parameter K determines the relative strength of
the dipolar interaction versus the thermal energy and is
given by

u?

K= Brpr 25)

(K~! ~ T can be interpreted as some kind of dimension-
less temperature, related to the intensity of the interac-
tion.) In this latter case, the movement is performed with
probability p. In the zero temperature limit, K~! =0, a
movement is accepted if and only if it reduces the dipo-
lar energy. In the high temperature limit, K~! — oo, all
movements are accepted: the particle undergoes a pure
Brownian motion and we recover the classic DLA model.
After every accepted movement, the moment of the ran-
dom walker is relaxed, that is to say, it is oriented in
the direction of the total field on its position. Indeed
this fact assumes that the relaxation time for the orien-
tation of particles is very short in comparison with the
movement of the center of mass of the particles. The
relaxation phenomenon will turn out to be crucial when
analyzing the order of dipoles.

The particles stick to the cluster when they overlap
one or more particles already incorporated to the aggre-
gate. The new particle is then attached in the point of
its last movement where it first contacted one of those
particles. After sticking to the cluster, the new attached
particle undergoes a last relaxation and its direction is
not changed any more.

For K~ = 0, this algorithm is quite fast. This is due
to the fact that dipolar interactions attract the incoming
particles towards the cluster, avoiding time-consuming
spurious movements far from it. In this case, it is possi-
ble to grow clusters up to 5000 particles in a reasonable
amount of CPU time. For K~ > 1073, the algorithm
becomes very slow, because of the predominance of ther-
mal disorder over magnetic attraction in the Brownian
motion. A cluster of 1000 particles at a temperature
K~! =10 (the greatest simulated) requires about 8-10 h
of CPU time on an Apollo 9000/730 workstation; a clus-
ter of 1500 particle may take more than a week of CPU
time. We have generated and analyzed about 150 clus-
ters containing 1000 particles, for different values of K1
ranging from 0 to 10; for each value a number between
10 and 40 of aggregates have been simulated. Figure 1
shows some typical clusters of 1000 particles correspond-
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FIG. 1. Typical 2D dipolar clusters of 1000 particles, gener-
ated for several values of K. (a) K~' = 0, D = 1.2040.02.
(b) K7! 1073, D = 135+ 0.04. (c) K~' = 10,
D = 1.74 £ 0.02. (c) Pure DLA cluster, grown in the limit
K™!' — oo, D = 1.71 £ 0.01.

ing to four different values of K~!. In order to detect
finite-size effects, we have also generated 10 clusters at
K~! = 0 containing 5000 particles, the largest cluster
size available with our computer resources.

III. RESULTS
A. Fractal dimension

The fractal dimension D is determined from a log-log
plot of the radius of gyration of the cluster

LN 1/2
Ry(N) = (‘N‘ Z("'t - "'c.m.)z)

as a function of the number of particles N (see, for ex-
ample, Ref. [1]). From the relationship Ry(N) ~ N¥, we
get D = 1/v. The exponent v is computed by a least-
squares fitting of log (R4(IN)) on log(N) (all logarithms
in this paper are in base 10) for each aggregate, and the
different values are averaged over the ensemble of clusters
generated for the same value of K 1.

In order to check our algorithm, we have generated 100
clusters containing 1000 particles in the limit K—! — oo
(true DLA with no dipolar interactions). In this case,
the moment of each particle was randomly oriented. The
fractal dimension computed is D = 1.71+0.01 (statistical

(3.1)

errors in this paper are at a 95% confidence limit). We
thus recover, within the error bars, the well-known value
D = 1.715 + 0.004 [17].

The fractal dimension D has been computed for the
aggregates grown at each analyzed value of K~!. Some
remarkable results are in order.

(i) K~! = 0. For 10 clusters of 5000 particles, we get a
fractal dimension D = 1.1340.01, whereas for 40 clusters
of 1000 particles, D = 1.20 £ 0.02. We can explain this
discrepancy by analyzing D as a function of N for the
clusters containing 5000 particles, Fig. 2. We notice that
D establishes itself on a value around 1.13 for N > 3000,
whereas for N < 3000 its value fluctuates and is some-
what larger. At K~ = 0, a cluster of 1000 particles has
not yet reached a stable state and the fractal dimension
we compute from it is slightly overestimated. This is also
true for the smaller values of K ~! simulated. In any case,
the value of D is clearly lower than the one correspond-
ing to true DLA. In Fig. 1(a) we can see a typical cluster
with dipolar interactions grown at K~! = 0. We can
compare the form of this aggregate with the one corre-
sponding to true DLA, grown with the same algorithm,
which is shown in Fig. 1(d). The dipolar cluster has a
much lesser branched and a more open structure, that is
to say, it has a smaller bifurcation ratio [18].

(ii) K~! = 1073, In the cluster-cluster aggregation ex-
periment described in Ref. [14], magnetic particles were
employed for which K ~ 1360, at room temperature. In
our simulations, the fractal dimension obtained for clus-
ters grown at K~! = 1073 is D = 1.3540.04. Figure 1(b)
shows a typical cluster of this kind. This value of D is
clearly different, out of the error bars, from that com-
puted for K~1 = 0.

(iii) K~! = 10. For this value of K~!, which is the
largest we have considered, we find D = 1.74 £ 0.02.

1.7 T T T T T
1.6 - B
1.5 -
D
1.4 - -
1.3 -
1.2 - _
1.1 1 1 L 1 1
1.0 1.5 2.0 25 3.0 35
log N
FIG. 2. Fractal dimension D as a function of N for 2D
dipolar clusters grown at K~' = 0. The values of D have

been computed at several stages of the growth of the clusters.
The logarithm is to the base 10 here and throughout.
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Figure 1(c) shows a typical cluster at K~! = 10. The
fractal dimension has already reached, within the error
bars, the limit value of true DLA (K~! — o0).

Figure 3 shows a plot of D as a function of K~ for
the whole range of values analyzed. It seems to exhibit
a smooth increasing behavior when increasing K1, the
values of D ranging between the limits corresponding
to K~1 = 0 (aggregation with dipolar forces of infinite
strength or zero temperature) and K~! = co (aggrega-
tion with no interactions or infinite temperature).

In order to understand this situation we can provide a
theoretical reasoning. Let us consider a particle that is
going to be attached to the cluster, onto another one be-
longing to the cluster. It can stick on the tip of a branch
with probability P,, thus contributing to its growth, or
it can do so along the branch with probability P, and,
therefore, contribute to its splitting. Both probabili-
ties are related to the dipolar forces and thermal disor-
der (Brownian motion) through the so-called growth-site
probability distribution [1]. Since dipolar interactions de-
cay as 73, we can consider that the main contribution
to the energy comes from the interaction between the in-
coming particle and the particle on the cluster on which
the new one is going to be attached. Given the expression
(2.2) for the energy, we have two possible positions ener-
getically favored, depicted in Fig. 4, which minimize u;;.
Due to the relaxation mechanism, position 4(a) can only
happen on the tip of a branch, and therefore it is related
to the growth of the branch and to the growing probabil-
ity Py. Position 4(b), on the other hand, can occur along
the whole branch, being related to splitting and to the
splitting probability P;. These probabilities are given by

the energy of their respective configurations, ug = —2
and u, = —1, through a Boltzmann factor. Then one
has
T T T T T T T
1.8 - -
D(K1'—>©)=1.71+.01 —>
17 B A T e L .
1.6 |- -
D 1.5+ -
1.4 -
1.3 -
1.2 - -
e . DK!=0)=113£01
1.1
1 1 1 Il | 1 1 T
-6 -5 -4 -3 -2 -1 0 1 2

log(K'1)

FIG. 3. Fractal dimension D as a function of K~ for 2D
dipolar clusters.

a) b)

FIG. 4. Given the expression (2.2), there are two possible
relative positions which minimize dipolar energy. Position
(a), associated with the growth of a given branch (energy
ug = —2), and position (b), associated with its split (energy
us = —1).

_g-"l ~ exp [—K(ug - ‘U«s)] = exp(K),

8

(3.2)

where ug and u, are the energies of the two configura-
tions.

At zero temperature, K — oo, we have P; = 0; the
most likely event is the growth of a given branch, not
its split. Neglecting the effect of thermal disorder, we
should then expect at K~! = 0 an aggregate of D = 1.
In fact, Fig. 2 hints in this direction. D(N) seems to
be a decreasing function of V and we cannot reject the
possibility of D — 1 in the limit N — oo. The actual
finite branching found in our simulations at K~! = 0 is
due to the randomness introduced by the Monte Carlo
algorithm, which tends to be negligible in the limit of
large cluster sizes. For large values of K~!, we have

-~ Py ~ P,; the growth of a given branch and its split are

equally likely events. The effect of dipolar interactions is
overcome by the Brownian disorder and we recover the
original DLA model with no interactions. At intermedi-
ate values of K, the ratio between growing and splitting
probabilities given by dipolar interactions evolves con-
tinuously, as well as the effect of thermal disorder. We
should expect a continuous change in the geometry of the
cluster and, therefore, a smooth dependence of D on the
temperature.

B. Correlation functions

Dipolar interactions, by means of the magnetic relax-
ation procedure, induce a microscopic order in the ori-
entation of magnetic moments. Neighbor dipoles cannot
point in random directions but must be correlated, the
orientation of each one being given by the total magnetic
field generated by the cluster at the point where the parti-
cle was attached. In Fig. 5 we have drawn the orientation
of the dipoles associated with the particles belonging to
the inner region around the seed, for the clusters shown
in Fig. 1. As we can see, dipoles belonging to the same
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neighborhood point in the direction of the local field on
its position, for any value of K 1.

One way of obtaining information about the orienta-
tion order in the cluster is to study the correlations be-
tween the moments of its particles. Following Ref. [19],
we define in 2D the ordinary density-density or pair cor-
relation function

go(r) = (2nrArN)~! >

r— AT P P | <r+ 4T

p(r)p(r"),

(3.3)

where p(r) is equal to 1 if a particle occupies the position
7 and 0 otherwise. Ar is the length step in a space dis-
cretization. For fractal aggregates, the pair correlation
function exhibits a power-law behavior, with

go(r) ~r~°, (3.4)

the fractal dimension being given by D, = dg — « (corre-
lation dimension). In this case, dg = 2 is the Euclidean
dimension of the embedding space.

Following [19], we can define a vector correlation func-
tion depending on the relative orientation of pairs of
dipoles separated a distance 7,

25 diameters 25 diameters

(a) ()

25 diameters 25 diameters

© (d

FIG. 5. Close up of the inner regions around the seed of
the clusters shown in Fig. 1. The dipoles attached to each
particle have been drawn in order to compare their relative
orientations. (a) K™! = 0. (b) K~! =1073, (¢) K~* = 10.
(d) Free DLA cluster (K~' — o00). The orientation of its
dipoles has been assigned at random.
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g1(r) = @rrArN) ! Z

L L P

u(r’) - u(r”),

(3.5)

where u(r) is the unit vector oriented along the direc-
tion of the magnetic moment of the particle located at
position ». This function is a quantitative measure of ori-
entational correlations between pairs of dipoles. We can
also define another correlation function of the moments
of a cluster

g2(r) = (2nrArN)~! Z

r— AL P P |<r+ 4T

lu(r’) - w(r")],

(3.6)

which depends on the absolute value of the scalar prod-
uct of pairs of moments. Due to the fractal nature of
the clusters, we expect a scaling behavior for these func-
tions [19], g1(r) ~ r~°* and gz(r) ~ r~°2, and also the
same scaling exponent for g»(r) as for the pair correlation
function as; = a.

Figure 6 shows a log-log plot of the correlation func-
tions go(r), g1(r), and g2(r) computed from 10 clusters
generated at K~!' = 0, and composed of 5000 parti-
cles. All three functions exhibit a power-law behavior
with r. From the plot of go(r) we compute the exponent
a = 0.82, which provides a fractal dimension D, = 1.18,
quite similar to the value obtained from the radius-of-
gyration method (D = 1.13). As expected, the vector
correlation function g,(r) decays with the same exponent
as the pair correlation function, a; = a = 0.82, whereas
g1(r) scales with a different exponent, a; = 1.00. The

-2
log g(1)
-3

-4

-5

_6 ] | 1
0 1 2 3

logr

FIG. 6. Correlation functions go(r), g1(r), and g2(r), com-
puted from 10 2D clusters grown at K~! = 0 and containing
5000 particles. All three functions present power-law behav-
ior, with the same exponent 0.82 for go(r) and g2(r), and a
different exponent, close to 1.0, for gi(r).
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vector correlations for dipole orientations show a behav-
ior similar to the correlations for bond vectors described
in Ref. [19]. As was found in that paper, g1 (r) scales with
a different exponent from go(r). However, the difference
between the exponents we have found is not as dramatic
as it was in the case discussed in [19].

We have also computed the correlation functions from
the ensembles of clusters composed of 1000 particles
grown at different values of K~!. From our results we
conclude that g2 (r) always exhibits the same scaling ex-
ponent as the pair correlation function. Figure 7 shows
the functions g () computed in a range of values of K !
between 0 and 10~2. These correlations seem to present
a power-law behavior with an exponent a; ~ 1, roughly
independent of K~1. Figure 8 shows g;(r) computed
from clusters in the range of K~! between 107! and 10.
In order to compare the behavior of these functions with
a limit case of maximum disorder, we have also plotted
in this figure the vector correlations computed from two
ensembles of 25 pure DLA clusters (grown with no in-
teractions), each one composed of 5000 particles. The
particles of these aggregates have attached dipoles with
orientations assigned in two different ways. For the first
ensemble, we assign relazed dipoles: the seed of the clus-
ter bears a dipole pointing in a randomly chosen direc-
tion; the orientation of the particles successively added
to the cluster is chosen to be parallel to the total mag-
‘netic field in the point where the particle was attached.
For the second ensemble, we assign random dipoles: the
dipole orientation of each particle is chosen completely
at random. DLA with relaxed dipoles can be interpreted
as the limit case of growth at K~! — oo with dipolar in-
teractions whose only effect is to relax the vector dipoles
in the direction of the total magnetic field. DLA with
random dipoles can be seen as the limit case of growth

-1 T T T T T
2+ 4
log g,(r)
3+ 4
a4l i
_s L 1 1 1 !
0.0 0.5 1.0 1.5 2.0 2.5

logr

FIG. 7. Vector correlation functions g;(r) computed from
several ensembles of 2D dipolar clusters in a range of values
of K~ ! between 0 and 10~ 2. All of them exhibit a power-law
behavior with roughly the same scaling exponent o; ~ 1.

0.030 T T T T
— K'!'=10"
0025 —— K| -
\ ——= K'=10
——~~~ DLA (relaxed dipoles)
0.020 - DLA (random dipoles)
g,(r) o015 =
0.010 r" -1
0.005 4
0.000 T -
~0.005 . : . :
0.0 0.5 1.0 1.5 2.0 2.5

logr

FIG. 8. Vector correlation functions g;(r) computed from
several ensembles of 2D dipolar 1000-particle clusters in a
range of values of K~ between 10~* and 10, and from two
ensembles of 25 5000-particle 2D DLA clusters. The parti-
cles in these latter ensembles have attached relaxed and ran-
domly oriented dipoles, respectively (see text). The vector
correlations are short-ranged, with a limit in a maximal dis-
order situation, DLA with random dipoles. We have used a
semilogrithmic plot due to'the nonpositive character of g1 (r).

with no dipolar interactions, and thus with no ordering
effects at all.

In all the cases shown in Fig. 8, g1(r) is not a positive
definite function. That is to say, for any value of Kt
greater than 102, the vector correlations are no longer
long range (power law). Correlations tend to decrease
when increasing the temperature towards a well-defined
limit at K~! — oo (DLA with relaxed dipoles), in which
we found a remnant order due to the relaxations mecha-
nism. When interactions are completely removed (DLA
with random dipoles) there is no order left.

These results can be interpreted as follows. For small
values of the temperature (K~! — 0), the relaxation
procedure produces a microscopic order in the orien-
tation of dipoles (on neighbor dipoles) which induces
a macroscopic correlation of orientations over long dis-
tances, thus yielding a long-range behavior pattern for
the vector correlations. For large values of the temper-
ature (K~! — o00), thermal disorder prevails, through
the fractal geometry of the aggregates, over relaxational
order and the vector correlations become short range:
dipoles are uncorrelated over long distances. As we can
see from Figs. 7 and 8, the vector correlations change con-
tinuously with K ~!; the order induced by relaxation is
smoothly affected by the changes in the geometry of the
cluster produced by increasing thermal disorder. There-
fore, we can conclude that the changes in the geome-
try with temperature must also be continuous, and the
same should be true for the fractal dimension. Because
of the sudden change in the behavior of g;(r) from long
to short range, however, we cannot exclude the possibil-



6000

ity of a crossover, with a sharp fall of D for some value
K ;! around 1072, a fall that we have not detected in our
simulations because of the limited size of the clusters we
have generated.

C. Orientation probability density

Another direct way to measure correlations between
pairs of dipoles is simply to study its relative orientation.
Consider a pair of dipoles in a cluster whose directions
form a certain relative angle 8, which we consider normal-
ized to the interval [0, 7]. We introduce a new quantity,
the orientation probability density (OPD) P(K,#), which
we define as follows: P(K,6)d0 is the probability that the
angle formed by the directions of a pair of dipoles, chosen
at random from a cluster generated at some given value
of K, is included in the interval [0, 0 + d6)].

This probability density is a measure of the order of
the dipoles on the cluster. In a completely disordered
distribution, all relative orientations are equally probable
and, therefore, we have P(#) = const = 1. In a distribu-
tion in which all the dipoles point in the same direction,
every pair forms a relative angle of zero radians, then
P(0) = 6(0). A given distribution of dipoles will provide
some density P(K, @) between these two limit values.

In order to determine P(K, ), we fix a small angular
increment Af. On the set of all pairs of dipoles in a clus-
ter (generated at some given value of K~! and composed
of N particles), we compute the function n(K,6), which
is defined as the number of pairs with a relative angle
between 6 and 6 + Af. We then have

2

1
K. 0). (3.7)

In order to reduce statistical uncertainties, these values
are averaged over the ensemble of clusters grown at the
same temperature. ’

Figure 9 shows P(K,#) computed from several ensem-
bles of clusters of 1000 particles, grown at different val-
ues of K1, between 0 and 10. For small values of K1
(K~! <1072) we can fit P(K, ) to the function

P(K,0) =a(K) + b(K)cos8. (3.8)
This function must be normalized such that
/ P(K,0)d = ra(K) = 1, (3.9)
0

which implies that a(K) = w~!. A least-squares fit-
ting of P(K,@) on cos@ provides the values for the co-
efficients a(K) and b(K) given in Table I. As expected,
the coefficients a(K) are almost independent of K ! and
its average over the range of values of K~ is (a) ' =
3.153 £ 0.002, quite similar to the predicted value .
For values of K~! > 1072, P(K,0) is almost constant:
P(K,0) = d/(K), with o/(K) = m~!. A least-squares
fitting of P(K,6) on cosf and 6 provides in both cases
poor values for the goodness-of-fit correlation coefficients.
The coefficient a’'(K) is now obtained by averaging the
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FIG. 9. Orientation probability density P(K,6) computed
from several ensembles of 2D dipolar clusters composed of
1000 particles, at different values of K ~*. For small values of
K™, P(K,8) exhibits a sinusoidal behavior; for larger values
of K™!, this function is almost constant, which is evidence of a
significant orientational disorder. Solid lines are least-squares
fittings.

function P(K,6) on its range of discretized angles, 6;,
1=1,...,n,

o (K) = % i P(K,0). (3.10)

The computed values are given in Table II, and the cor-
responding average is now (a')—1 = 3.142 4+ 0.001.

As we can see from our results, P(K,6) can be fitted
to the functional form (3.8) for the whole range of K
values. The coefficient a(K) is the normalization con-
stant (a(K) = w~!). The coefficient, which measures
the strength of the correlations, is a decreasing function
of K—1; that is, the correlations of relative orientations
tend to diminish when increasing the temperature (ther-
mal disorder) towards the limit value b = 0. The limit is
already reached for K—! > 1072,

The OPD P(K,#) presents quite similar behavior as
the vector correlation function g;(r). In the low tem-
perature limit, the orientation of the dipoles is strongly

TABLE 1. Coefficients of a least-squares fitting on
a(K) + b(K) cos 0 for the OPD of 2D dipolar clusters grown
at given values of K™1.

Kt a (K) b (K)

0 0.3170 & 0.0003 0.0594 & 0.0005
10-° 0.3171 % 0.0004 0.0585 =+ 0.0006
1074 0.3171 + 0.0004 0.0545 + 0.0006
1073 0.3172 % 0.0004 0.0492 + 0.0005
1072 0.3176 + 0.0004 0.0305 + 0.0005
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TABLE II. Average value of the OPD of 2D dipolar clus-
ters grown at given values of K!.

K~ a' (K)

1071 0.3182 + 0.0004
1 0.3182 + 0.0004
10 0.3182 =+ 0.0003

correlated, and this yields a sinusoidal behavior for the
orientation density. As the temperature rises, the OPD
decreases continuously. In the high temperature limit,
the dipoles show a great deal of disorder (imposed by the
disorder of its intrinsic fractal geometry) and the OPD
is almost constant (all relative orientations are equally
probable). This latter point has been checked by com-
puting the function P(K,6) from two ensembles of 25
DLA clusters composed of 5000 particles with relaxed
and random attached dipoles, respectively. In both cases
the orientation density is almost constant, with an av-
erage value (a’)”" = 3.143. Once again, the continuous
variation of the OPD hints toward a smooth dependence
of the geometry on the temperature and, consistently, to-
ward a continuous dependence of the fractal dimension
on K1

IV. 3D MODEL

Our 2D computer model can be easily extended to the
three-dimensional (3D) case. The parameters A and e
for the launching and killing radius defined in Sec. II
have to be carefully chosen now in order to avoid bias in
the shape of the clusters and allow reasonable execution
CPU times. For K~! = 0, and due to the attractive
forces exerted by the cluster on the incoming particles,
the same values as in the 2D case, namely A = 2 and
e = 5, were employed. Because of limitations in our
computer resources, we have only generated clusters of
a maximum radius of 75d. This fact imposes an upper
limit on the maximum number of particles allowed in a
cluster.

In order to check our algorithm, we have grown 10 3D
DLA clusters (without dipolar interactions) containing
10000 particles. The radius-of-gyration method yields a
fractal dimension D = 2.46 + 0.04, in close agreement
within the error bars, with the known value D = 2.495 +
0.005 [17].

We have generated 30 3D dipolar clusters composed
of 1000 particles at K—! = 0. Figure 10 shows the per-
pendicular projections over the coordinate planes for a
typical 3D dipolar cluster. The fractal dimension com-
puted from this ensemble is D = 1.37 &+ 0.03, a smaller
value than for noninteracting 3D DLA clusters.

The different correlation functions considered in
Sec. III B for the 2D case have also been computed from
these clusters. These correlation functions correspond to
the ones introduced through Egs. (3.3), (3.5), and (3.6),

but with the normalization factor (4wr?ArN )_1, corre-
sponding to a 3D space.
As a result, we have found that the correlations go(r)
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FIG. 10. Perpendicular projections over the coordinate
planes for a typical 3D dipolar cluster composed of 1444 par-
ticles, grown at K~! = 0, D = 1.37 + 0.03.

and g»(r) present a scaling behavior with the same ex-
ponent as in the case 2D, whereas the vector correlation
function g;(r) is a nonpositive definite function, which
exhibits the short-range behavior of vector correlations
in a 3D space.

The OPD for 3D dipolar clusters P(6) can also be com-
puted by means of expression (3.7). The relative angle 6
in 3D is now the azimuthal angle in spherical coordinates
on a relative frame of reference. Figure 11 shows P(6) for
the ensemble of dipolar clusters, together with the orien-
tation density computed from two ensembles of 3D DLA
clusters of 10000 particles, which have assigned relaxed
and random dipoles, respectively. All three functions can
be fitted to the expression P(#) = 1sin6, which is the
density of an equiprobable distribution of azimuthal an-
gles in 3D spherical coordinates. That is to say, in a 3D
space the relative orientation of dipoles at zero tempera-
ture is randomly distributed.

This fact contrasts with the relative order induced by
relaxation in 2D. In order to explore this effect, we have
computed the function P’(), defined as the orientation
probability density for the normalized bidimensional pro-
jections of the components of the 3D dipoles over the X-Y
plane. If e, stands for an orthonormal base for the X-
Y plane, the normalized projection @ of the vector u is
given by

@ = v Z(ea -u)eq.

S (en - w)ea] (41)
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FIG. 11. Orientation probability density P(0) computed
from 3D dipolar clusters and DLA clusters with relaxed and
randomly oriented dipoles. The three distributions can be fit-
ted to the function £ sin 6 (solid line), which corresponds to an
equiprobable distribution of azimuthal angles in 3D spherical
coordinates. Dipole relative orientation presents, therefore, a
maximum disorder.

It has no meaning to compute the vector correlation func-
tions of the normalized projections, because they do not
have a well-defined minimum cutoff distance (particle di-
ameter in the original 3D space).

Figure 12 shows P’(f) computed from the ensemble
of 3D dipolar clusters at K~! = 0, and from two en-
sembles of 3D DLA clusters with relaxed and randomly
oriented dipoles. For the DLA clusters, the OPD of the
projected dipoles is almost constant, corresponding to
a maximum disorder. However, for dipolar clusters it
shows a clear sinusoidal behavior, as it was the case in
2D growth. A least-squares fitting on cos 8 provides the
expression P’(0) = 0.32 4+ 0.0087cos . In 3D the dipo-
lar interaction induces some kind of underlying order in
the dipole orientations, which only becomes apparent in
analyzing the bidimensional properties of the clusters.

V. CONCLUSIONS

In this paper we have investigated the effects of dipolar
interparticle interactions in particle-cluster aggregation
in two and three dimensions. The fundamental param-
eter turns out to be the dimensionless magnitude K1,
Eq. (2.5), which is related to the temperature of system T'
and to the relative strength of the magnetic interactions
. In 2D our results are summarized as follows.

(i) For K7! = 0 (low temperature, strong magnetic
forces), clusters are formed with a small value of the frac-
tal dimension D = 1.13 & 0.01. The aggregates have a
less branched and more open structure than DLA with
no interactions. This fact can be explained as the effect
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FIG. 12. Orientation probability density for the nor-

malized projections of 3D dipoles over the X-Y plane,
P'(0), computed from 3D dipolar clusters and DLA clus-
ters with relaxed and randomly oriented dipoles. The den-
sity for 3D dipolar clusters can be fitted to the function
P'(6) = 0.32 + 0.0087 cos @ (solid line). We thus recover the
sinusoidal behavior shown in 2D, while for the DLA cluster
the projected dipoles still present a maximum disorder.

of dipolar forces over the growth-site probability distri-
bution of the clusters [1]. The growth of a given branch
is much more likely than its split, which results in an
enhancement of the screening of the aggregate’s inner re-
gions.

(ii) When increasing K~! (high temperature, weak
magnetic forces), we recover a result already found in
previous works [13,14,16]: the fractal dimension raises
its value until it reaches the limit value of DLA with no
interactions. The plot of D as a function of K1, Fig. 3,
seems to show quite smooth and continuous behavior.
This fact can be explained by a continuous relative in-
crement of the splitting probability P, over the growing
probability P, when increasing the temperature, which
would cause a rise in the bifurcation ratio and therefore
a rise in the fractal dimension. Nevertheless, we cannot
utterly reject the possibility of a crossover, with a sharp
fall of D at some definite value of K ~!. In order to check
this possibility, larger clusters must be generated for in-
termediate values of K 1.

(iii) The short relaxation time for the orientation of
dipoles, implemented in our model through the relax-
ation mechanism discussed, induces a microscopic order
in the orientation of neighbor dipoles. At low temper-
ature (K~! < 1072), this microscopic order induces a
macroscopic ordering in the whole cluster, which is re-
vealed by two kinds of measurements: (1) the vector cor-
relation function (3.5) shows a power-law behavior (long-
range correlations) with a scaling exponent a; = 1.0
roughly independent of K~!; (2) the orientation proba-
bility density (3.7) exhibits a sinusoidal behavior, whose
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amplitude decreases with K~!. At high temperatures
(K~! > 10™?) macroscopic order is lost, which is shown
in the nonpositive definite vector correlations and an al-
most constant value for the OPD (limit of dipoles ran-
domly oriented). This loss can be explained as the effect
of the geometrical disorder induced by the fractal char-
acter of clusters. When increasing the temperature, the
aggregates are more complex and intricate, and the geo-
metrical disorder prevails over microscopic order, overrid-
ing long-range orientational correlations. The ordering
properties of dipolar clusters change continuously with
K ! due to variations in the geometrical disorder (fractal
character) of the clusters. This fact suggests a continuous
dependence of D on the temperature.

In the 3D case we have only analyzed the limit case of
zero temperature. As in the preceding case, a low value
for the fractal dimension was found, D = 1.37 £ 0.03. In
analyzing the orientational correlations, no order is found
even at T = 0; in 3D space dipoles are randomly dis-
tributed in spite of the relaxation process. Surprisingly,
however, when analyzing 2D related properties, namely

the OPD of the normalized projections of dipoles over
the X-Y plane, we recover the sinusoidal behavior typi-
cal of 2D clusters (Fig. 12). In view of these results, we
can conclude that, although the relaxation mechanism
does not produce an apparent macroscopic ordering in
the orientation of 3D dipolar clusters, it indeed induces
some underlying order, which is revealed by analyzing the
correlations of the normalized projections over a plane.
Further work must be done in this direction, including
the generation of clusters of size greater than those grown
in our present simulations.
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